SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE NAME:	DIGITAL ELECTRONICS
CODE NO.:	ELN-107
PROGRAM:	ELECTRONIC/ELECTRICAL/COMPUTER TECHNICIAN
SEMESTER:	TWO
DATE:	JANUARY 1993
PREVIOUS OUTLINE DATED:	JANUARY 1992
AUTHOR:	B. ARMSTRONG

NEW: REV.: XX

APPROVED:

wich TOR DEAN Ĺ

93 DATE

92.01 DATE

COURSE NAME DIGITAL ELECTRONICS

CODE NO. ELN107

TOTAL CREDIT HOURS: 80

PREREQUISITE(S): ELN-100 (EL/ET) ELN-106 (CET)

PHILOSOPHY/GOALS:

THIS COURSE IS A STUDY OF THE PRINCIPLES AND TECHNIQUES OF MODERN DIGITAL SYSTEMS. THE STUDENT WILL GAIN AN UNDERSTANDING OF NUMBERING SYSTEMS AND BOOLEAN ALGEBRA, THE PHYSICAL AND CONCEPTUAL PRINCIPLES OF LOGIC GATES, COMBINATIONAL LOGIC CIRCUITS, FLIP-FLOPS, COUNTERS, REGISTERS AND INTERFACING CIRCUITS.

- 2 -

STUDENT PERFORMANCE OBJECTIVES:

UPON SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENT WILL BE ABLE TO:

- 1. TEST AND TROUBLESHOOT DIGITAL LOGIC CIRCUITS & SYSTEMS
- 2. IDENTIFY LOGIC GATE SYMBOLS AND DESCRIBE THEIR FUNCTIONALITY.
- 3. INTERPRET AND UNDERSTAND LOGIC DIAGRAMS.
- 4. CONSTRUCT AND TEST DIGITAL LOGIC CIRCUITS.
- 5. CORRECTLY OPERATE ASSOCIATED TEST EQUIPMENT TO TROUBLESHOOT DIGITAL CIRCUITS.

TOPICS TO BE COVERED:

- 1. OVERVIEW OF DIGITAL LOGIC SYSTEMS
 - 2. DIGITAL NUMBERING SYSTEMS
 - 3. TTL GATES AND COMBINATIONAL LOGIC CIRCUITS
 - 4. TTL FLIP-FLOPS AND SEQUENTIAL LOGIC CIRCUITS
- 5. ATITHMETIC LOGIC CIRCUITS
- YAA6. TTL COUNTERS AND REGISTERS
 - 7. DIGITAL ENCODING, DECODING AND INTERFACE CIRCUITS
 - 8. OTHER I.C. LOGIC FAMILIES
 - 9. ELECTRICAL CHARACTERISTICS OF TTL AND CMOS

COURSE NAME DIGITAL ELECTRONICS

CODE NO. ELN-107

LEARNING ACTIVITIES	REQUIRED RESOURCES
1. INTRODUCTION TO DIGITAL SYSTEMS	Textbook as specified:
UPON SUCCESSFUL COMPLETION OF THIS R BLOCK, THE STUDENT WILL BE ABLE TO: R	Read Chapter One
1.1 Distinguish between digital and ñ analog systems. ñ ñ	
1.2 Understand the block diagram of ñ a computer system. ñ ñ	N SUCCESSFUL COMPLETION OF THE SUCCESSFUL COMPLETION OF THE SUCCESSFUL WILL BE ABLE
2. <u>NUMBERING SYSTEMS</u> ñ	Textbook as specified:
UPON SUCCESSFUL COMPLETION OF THIS ñ BLOCK, THE STUDENT WILL BE ABLE TO: ñ ñ	Read Chapter Two Complete assignment Video on Numbering Systems
2.1 Understand the following digital ñ number systems: ñ BINARY, OCTAL, HEXADECIMAL, BCD ñ ñ	
2.2 Convert one number system to ñ another, and perform simple ñ arithmetic calculations. ñ	
3. TRANSISTOR-TRANSISTOR LOGIC GATES ñ	Textbook - Chapter two
UPON SUCCESSFUL COMPLETION OF THIS R BLOCK, THE STUDENT WILL BE ABLE TO: R	Handouts - Basic TTL Gates IC Nomenclature
3.1 Recall & understand the Logic ñ Symbol, Truth Table, Boolean ñ Expression & operation of the ñ AND, OR, NOT, NAND & NOR Gates. ñ	Lab - "Basic Logic Gates" "Combinational Circuits"
3.2 Develop the logic circuit from ñ the Boolean expression & develop ñ the boolean expression for any ñ logic circuit.	
3.3 Apply Boolean Laws & Theorems to ñ simplify logic circuits. ñ	
3.4 Apply Alternate Logic Gate ñ representatons. ñ	SIRA IN ALLA THE STORENT WILL BE ABLE
4. COMBINATORIAL LOGIC CIRCUITS	Textbook - Chapter Four
UPON SUCCESSFUL COMPLETION OF THIS ñ BLOCK, THE STUDENT WILL BE ABLE TO: ñ	Lab - "Combinational Circuits" "Troubleshooting"
4.1 Simplify logic circuits using then	UP/DONN. RIPPLE. DECADE & B

- 3 -

- 4 -	
COURSE NAME DIGITAL ELECTRONICS	CODE NO. ELN-107
LEARNING ACTIVITIES	ñ REQUIRED RESOURCES
4.2 Design, make operational and in troubleshoot combinatorial logic in circuits.	n ñ 190 sollais sol Jutzezouz kogu ñ 196 se Jute rezoute set , 20018 ñ
5. <u>FLIP-FLOPS</u>	ñ ñ Textbook - Chapter Five
UPON SUCCESSFUL COMPLETION OF THIS IN BLOCK, THE STUDENT WILL BE ABLE TO: I	n ñ Lab - "Basic Flip-Flops" ñ "Flip-Flop Circuits"
5.1 Understand the operation of the finance NAND and NOR latches.	n ñ Handout -Flip-Flop Summary ñ
5.2 Recall and understand the logic is symbol and operation of the following flip-flops: J/K FLIP-FLOP f S/C FLIP-FLOP f D-TYPE FLIP-FLOP f D-TYPE LATCH	
5.3 Distinguish Synchronous and Asynchronous operation.	
5.4 Design, build and troubleshoot f flip-flop circuits.	
6. ARITHMETIC OPERATIONS & CIRCUITS	ň ň Textbook – Chapter Six
UPON SUCCESSFUL COMPLETION OF THIS R BLOCK, THE STUDENT WILL BE ABLE TO: R	
6.1 Perform algebraic operations in f the binary number system.	i a diverte electroni colsvel 2.2
6.2 Understand basic logic circuits f used to perform these operations.f	a so e doises ore and
7. COUNTERS AND REGISTERS	ň Textbook – Chapter Seven
UPON SUCCESSFUL COMPLETION OF THIS BLOCK, THE STUDENT WILL BE ABLE TO: f	ň Lab – "Asynchronous ň Counters" ň – "Synchronous
7.1 Distinguish Synchronous and f Asynchronous counters.	n Counters" n - "BCD Counters" n
7.2 Understand the operation of, design and construct circuits utilizing the following counters;	

.

COURSE NAME DIGITAL ELECTRONICS

CODE	NO.
ELN-1	07

LEARNING ACTIVITIES	ñ REQUIRED RESOURCES
7.3 Understand the operation of the following types of counters; PIPO, PISO, SISO & SIPO	ñ ñ ñ
8. ENCODERS AND DECODERS	ñ Textbook - Chapter Nine
UPON SUCCESSFUL COMPLETION OF THIS BLOCK, THE STUDENT WILL BE ABLE TO:	ñ Lab activities for this ñ block are associated ñ with Block 7.
8.1 Analyze and utilize Decoders and Encoders in various circuit Applications.	
9. IC ELECTRICAL CHARACTERISTICS AND INTERFACING	ñ ñ Textbook - Chapter Eight
UPON SUCCESSFUL COMPLETION OF THIS BLOCK, THE STUDENT WILL BE ABLE TO:	й ñ ñ
9.1 Identify other logic families and understand their electrical characteristics.	វិកី កី កី
9.2 Distinguish TTL and CMOS devices.	ñ
9.3 Understand the principles in interfacing TTL and CMOS families	n ñ 5ñ
9.4 Understand the operation of A/D and D/A Converters.	
ADDITIONAL RESOURCE MATERIALS	5:
The Instructor may provide ad materials as required.	dditional handouts and/or

5 -

ab Attendance is compulsory and is included in the

instructor reserves the right to modify

COURSE NAME DIGITAL ELECTRONICS	CODE NO. ELN-107
METHOD(S) OF EVALUATION	
 Testing will consist of bo At least one weeks notice tests. 	oth theory and practical. will be given for all major
2. Quizzes will be given from	n time to time without notice
Theory - 60% Lab - 40%	
TOTAL - 100%	
THE GRADING SYSTEM USED WILL A+ = 90 - 100% A = 80 - 89% B = 70 - 79% C = 55 - 69% R REPEAT	BE AS FOLLOWS:
The student must attain a 55% portions to successfully comp	s in both the theory and lab plete the course.
REQUIRED STUDENT RESOURCES:	
TEXT BOOKS: 1. Digital System Fifth Edition R.J. Tocci	ns: Principles & Applications
The student will require the	Toolkit used in Semester 1
Each student must purchase the contains all components required activities. These IC's are avefor a cost of about \$10.00.	neir Digital IC package which red to perform lab vailable in the campus shop
	LIGOTICIONAL REPORTS ANT

ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

1. Thomas L. Floyd Digital Fundamentals Merrill 1990

2. Malvino/Leach <u>Digital Principles & Applications</u> McGraw Hill 1988

SPECIAL NOTES:

- Lab Attendance is compulsory and is included in the evaluation process.
- 2. The instructor reserves the right to modify the course to meet the needs of the students.